Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Dent Sci ; 19(2): 1004-1011, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38618050

RESUMO

Abstract Background/purpose: Computer aided implant surgery has been widely adopted in modern implant dentistry. However, absence of reliable anatomic landmarks for superimposing digital data sets for patients with terminal dentition or complete edentulism remained challenging. Utilization of additional fiducial markers intraorally as the reference points for the improvement of accuracy became crucial in implant digital workflow. Nevertheless, the choice of the material for fiducial markers should present the least radiographic artifacts under cone beam computed tomography (CBCT) for better accuracy. The aim of this in vitro study was to investigate the volume of radiographic artifacts generated through different materials under the image of CBCT. Materials and methods: Fifteen dental materials were selected and configured into cubic shape. All the materials were scanned initially with the laboratory scanner as the control groups. The samples were scanned by CBCT machine as test groups and the volume of artifact generated under CBCT images were compared and analyzed using 3D modeling software. Results: Eleven out of fifteen materials could be recognized under CBCT images. Volumetric analysis reported that statistically significant differences among the materials could be noted, and the flowable composite resin presented the least volumetric difference. Lithium disilicate glass-ceramic, flowable composite resin, and gutta-percha presented the least deformation and maintained their cubic shapes. Conclusion: The results of the present study may imply that flowable composite resin compared to all ceramic materials, amalgam and gutta-percha may be a preferable choice when utilized as fiducial markers under CBCT images.

2.
J Prosthet Dent ; 127(1): 115-121, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33234303

RESUMO

STATEMENT OF PROBLEM: The effect of heat treatment on the microstructure and mechanical properties of cobalt-chromium (Co-Cr) removable partial denture (RPD) frameworks fabricated by selective laser melting (SLM) is not well understood. PURPOSE: The purpose of this in vitro study was to evaluate the suitability of SLM-fabricated Co-Cr alloys followed by heat treatment as a framework for RPDs by determining the microstructure and mechanical properties. MATERIAL AND METHODS: Dumbbell specimens and RPD frameworks were fabricated by using SLM followed by heat treatment. The effects of the heat treatment on the microstructure were studied by using optical microscopy, scanning electron microscopy (SEM), and X-ray diffraction (XRD). Tensile and insertion and removal tests were performed to study the mechanical responses of selective laser melting followed by heat treatment specimens, including the ultimate tensile strength (UTS), 0.2% yield strength (0.2% YS), elongation (E), and retentive forces. Specimens fabricated by using the traditional lost-wax process were used as a control (casting) group. RESULTS: X-ray diffraction indicated that the γ-face-centered cubic phase dominated SLM and selective laser melting followed by heat treatment specimens. Results from optical microscopy and SEM showed microstructural changes under different fabrication and postprocessing heat treatments; it was difficult to observe the grain boundary in the SLM group, whereas submicrometer-scale grains had formed in the selective laser melting followed by heat treatment group. The selective laser melting followed by heat treatment group exhibited the highest elongation and retentive forces compared with the casting and SLM groups. CONCLUSIONS: SLM increased the mechanical properties of Co-Cr alloys. Postprocessing heat treatment further enhanced the tensile ductility. It is suggested that SLM followed by heat treatment is an efficient strategy for fabricating RPD frameworks.


Assuntos
Prótese Parcial Removível , Cromo , Ligas de Cromo , Cobalto , Temperatura Alta , Lasers
3.
J Prosthet Dent ; 127(1): 122-127, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33223197

RESUMO

STATEMENT OF PROBLEM: Although studies have reported on selective laser melting (SLM)-fabricated removable partial dentures (RPDs), research addressing the trueness of SLM-fabricated RPD metal frameworks is sparse. PURPOSE: The purpose of this in vitro study was to evaluate the trueness of powdered cobalt-chromium (Co-Cr) or titanium-6 aluminum-4 vanadium (Ti-6Al-4V) alloy frameworks for RPDs fabricated by SLM. MATERIAL AND METHODS: A digital scan of a Kennedy class II mandible typodont was obtained to design an RPD framework by using a computer-aided design (CAD) software program (denoted as CRF). Two experimental groups of frameworks were fabricated from the CRF by using SLM in alloys of Co-Cr (SLM-Co-Cr, n=6) and in Ti-6Al-4V (SLM-Ti-6Al-4V, n=6) while a control group was fabricated by using traditional lost-wax casting following stereolithography (CA-Co-Cr, n=6). In total, 18 RPD frameworks were digitally scanned (denoted as CRF), with each scan then superimposed on the CRF and evaluated for discrepancies by using a 3D analysis software program. A nonparametric Kruskal-Wallis test was performed to determine differences in trueness among groups (α=.05). RESULTS: The CA-Co-Cr group showed the highest discrepancy between CEF and CRF. Statistically significant differences were found between the CA-Co-Cr and SLM-fabricated groups (P=.03 for Co-Cr, and P=.016 for Ti-6Al-4V). However, no significant difference was found between the SLM-Co-Cr and SLM-Ti-6Al-4V groups (P=.787). CONCLUSIONS: SLM-fabricated RPD frameworks exhibited higher trueness than CA-Co-Cr fabricated ones, indicating the potential of selective laser melting to produce the geometric shapes required for accurate dental restorations.


Assuntos
Prótese Parcial Removível , Ligas de Cromo , Desenho Assistido por Computador , Ligas Dentárias , Congelamento , Lasers , Titânio
4.
Polymers (Basel) ; 13(17)2021 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-34502981

RESUMO

This study evaluated color stability and staining susceptibility of five direct resin-based composites (RBCs) subjected to light-activated in-office bleaching with 40% hydrogen peroxide (HP). The test materials included 5 RBCs, which consisted of one nano-filled, one sub-micron, one bulk-filled, and two nano-hybrid RBC types. Ten disc-shaped specimens of each RBC were fabricated and divided into bleaching (BLE) and non-bleaching (CON) groups (n = 5 for each group). Specimens were then immersed in red wine solution over 4 h. A spectrophotometer was used to obtain Commission Internationale de l'Eclairage (CIE) L*a*b* parameters for each of the following periods tested: before bleaching (TBA), after bleaching (TBL), and after staining (TST). Color stability and staining susceptibility were evaluated using two metrics, CIEDE2000 color differences (ΔE00) and whiteness variations using the whiteness index (ΔWID). Data were analyzed using repeated measures two-way analysis of variance (ANOVA) (α = 0.05). Statistically significant and clinically unaccepted ΔE00 and ΔWID were observed for all tested specimens between TBA and TBL. The nano-hybrid type RBCs showed the highest discoloration among materials after bleaching treatment. The BLE group exhibited significantly higher ΔE00 and ΔWID than the CON group for all the tested RBCs between TBA and TST. The sub-micron type RBC showed the highest discoloration among materials after immersion in the red wine. Conclusion. The light-activated in-office bleaching with 40% HP's influences on color and whiteness index were material-dependent. The use of bleaching treatment also increased the susceptibility to red wine for all RBCs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...